Temporal modulation transfer functions in the barn owl (Tyto alba)

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Jan;187(12):937-43. doi: 10.1007/s00359-001-0259-5.

Abstract

Barn owls (Tyto alba) have evolved several specializations in their auditory system to achieve the high sensory acuity required for prey capture, including superior processing of interaural time differences and phase coding in the auditory periphery. Here, we tested whether barn owls are capable of high temporal resolution that may be a prerequisite for the accuracy in binaural processing. Temporal resolution was measured psychoacoustically and demonstrated in temporal modulation transfer functions. Four barn owls were trained in an operant task with food reward to detect sinusoidal amplitude modulations within an 800-ms gated white-noise burst or 800-ms periods of modulation in continuous white noise (spectrum levels of -5 dB and 15 dB SPL). Within the range of tested amplitude modulation frequencies from 5 Hz to 1280 Hz, barn owls' detection thresholds were lowest at 10-20 Hz. This sensitivity corresponds to an intensity-difference limen of between 0.9 dB and 1.4 dB. For all conditions, temporal modulation transfer functions showed band-pass characteristics with a high-frequency cutoff in the range of 37 Hz to 92 Hz, corresponding to minimum integration times of 4.3 ms and 1.7 ms, respectively. In summary, these data indicate a temporal resolution in the owl's auditory system that is good, but not unusual, compared to other vertebrates.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Auditory Threshold / physiology*
  • Behavior, Animal / physiology
  • Psychometrics
  • Sound Localization / physiology*
  • Strigiformes / physiology*