Modeling coincidence detection in nucleus laminaris

Biol Cybern. 2003 Nov;89(5):388-96. doi: 10.1007/s00422-003-0444-4. Epub 2003 Nov 28.

Abstract

A biologically detailed model of the binaural avian nucleus laminaris is constructed, as a two-dimensional array of multicompartment, conductance-based neurons, along tonotopic and interaural time delay (ITD) axes. The model is based primarily on data from chick nucleus laminaris. Typical chick-like parameters perform ITD discrimination up to 2 kHz, and enhancements for barn owl perform ITD discrimination up to 6 kHz. The dendritic length gradient of NL is explained concisely. The response to binaural out-of-phase input is suppressed well below the response to monaural input (without any spontaneous activity on the opposite side), implicating active potassium channels as crucial to good ITD discrimination.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Auditory Pathways / physiology*
  • Brain Stem / physiology*
  • Chickens
  • Computer Simulation
  • Models, Neurological*
  • Neurons / physiology*
  • Sound Localization / physiology*
  • Strigiformes