Astrocyte apoptosis: implications for neuroprotection

Prog Neurobiol. 2004 Feb;72(2):111-27. doi: 10.1016/j.pneurobio.2004.02.001.

Abstract

Astrocytes, the most abundant glial cell types in the brain, provide metabolic and trophic support to neurons and modulate synaptic activity. Accordingly, impairment in these astrocyte functions can critically influence neuronal survival. Recent studies show that astrocyte apoptosis may contribute to pathogenesis of many acute and chronic neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease and Parkinson's disease. We found that incubation of cultured rat astrocytes in a Ca(2+)-containing medium after exposure to a Ca(2+)-free medium causes an increase in intracellular Ca(2+) concentration followed by apoptosis, and that NF-kappa B, reactive oxygen species, and enzymes such as calpain, xanthine oxidase, calcineurin and caspase-3 are involved in reperfusion-induced apoptosis. Furthermore, we demonstrated that heat shock protein, mitogen-activated protein/extracellular signal-regulated kinase, phosphatidylinositol-3 kinase and cyclic GMP phosphodiesterase are target molecules for anti-apoptotic drugs. This review summarizes (1) astrocytic functions in neuroprotection, (2) current evidence of astrocyte apoptosis in both in vitro and in vivo studies including its molecular pathways such as Ca(2+) overload, oxidative stress, NF-kappa B activation, mitochondrial dysfunction, endoplasmic reticulum stress, and protease activation, and (3) several drugs preventing astrocyte apoptosis. As a whole, this article provides new insights into the potential role of astrocytes as targets for neuroprotection. In addition, the advance in the knowledge of molecular mechanisms of astrocyte apoptosis may lead to the development of novel therapeutic strategies for neurodegenerative disorders.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Apoptosis / physiology*
  • Astrocytes / drug effects
  • Astrocytes / pathology*
  • Astrocytes / physiology*
  • Humans
  • Neurodegenerative Diseases / physiopathology
  • Neuroprotective Agents / pharmacology
  • Signal Transduction / drug effects
  • Signal Transduction / physiology*

Substances

  • Neuroprotective Agents