Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling

Neuroscience. 2004;127(4):845-58. doi: 10.1016/j.neuroscience.2004.05.050.

Abstract

Unipolar brush cells (UBCs) are a class of excitatory, glutamatergic interneurons occurring at high density in the granular layer of the vestibulo-cerebellum. UBCs are intermediate in size between granule cells, which in rat originate postnatally from precursors in the external granular layer, and Golgi cells, which are generated prenatally and postnatally from precursors in the ventricular zone that continue to divide while they migrate toward the cortex. The origin of the UBCs is still poorly understood. In this study, we set forth to ascertain the possible prenatal origin of UBCs, taking advantage of the immunocytochemical 5-bromo-2'-deoxyuridine (BrdU) method to label dividing cells in combination with antisera to cell population markers, that distinguish UBCs from granule and Golgi cells. Pregnant rat dams received six i.p. injections of BrdU (total 36 mg/animal) over 2 successive days at different stages of prenatal development (embryonic day [E]14/15-E20/21). Adult offspring were analyzed for histology. Using antibodies against the ionotropic glutamate receptor GluR2 and the calcium binding protein calretinin we found two populations of UBCs. A subset of about 30% of UBCs was calretinin and GluR2 positive, while the majority of the UBCs were calretinin negative and GluR2 positive. Results indicate that UBCs originate from precursors proliferating between E16 and E21. However, UBCs defined by calretinin immunoreactivity were primarily born in a narrow time window at E17-18. UBCs immunostained with antiserum to GluR2, but not labeled with calretinin were generated later, from E19 to E21. Our data also indicate that a part of GluR2 positive UBCs are born around and after E22. The subset of later born, calretinin negative UBCs may coincide with the pale cells, a group of cerebellar interneurons previously identified by [3H]thymidine labeling.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Bromodeoxyuridine / analysis*
  • Cerebellum / chemistry
  • Cerebellum / cytology*
  • Cerebellum / embryology*
  • Female
  • Interneurons / chemistry
  • Interneurons / cytology*
  • Pregnancy
  • Rats
  • Rats, Sprague-Dawley
  • Time Factors

Substances

  • Bromodeoxyuridine