The trigeminal sensory relay to reticulospinal neurones in lampreys

Neuroscience. 2005;131(2):535-46. doi: 10.1016/j.neuroscience.2004.11.003.

Abstract

This study was carried out to identify lamprey neurones relaying trigeminal sensory inputs to reticulospinal cells. Double labeling with fluorescent tracers was used in vitro. Fluorescein-conjugated dextran amines were applied to the proximal stump of the cut trigeminal nerve on both sides, and Texas Red-conjugated dextran amines were injected unilaterally in the middle (MRRN) or the posterior (PRRN) rhombencephalic reticular nuclei. Texas Red retrogradely labeled cells were found ipsi- and contralateral to each injection. Any of these cells with the soma or at least a major dendrite among the fluorescein-labeled trigeminal afferent axons was considered a candidate relay cell. Of these two possibilities, only cells with their soma among the fluorescein-labeled trigeminal afferents were found. The candidate relay cells projecting to the MRRN were mostly clustered at the caudal vestibular nerve level within the trigeminal descending tract, whereas the majority of those projecting to the PRRN were located more caudally. The diameter of candidate relay cells ranged from 9.2 to 24.6 mum and 9.2 to 46.1 mum, after MRRN and PRRN injections, respectively. A possible relay function for these cells was tested with electrophysiological experiments. The intracellular responses to trigeminal nerve stimulation were recorded in reticulospinal cells under control conditions and after ejections of a combination of glutamate ionotropic receptor antagonists over the candidate relay cells in small areas along the sulcus limitans. The synaptic responses elicited in MRRN reticulospinal cells were maximally depressed when ejections were made at the level of the vestibular nerve, in accord with the anatomical data. The synaptic responses in PRRN reticulospinal cells showed maximal depression when ejections were made slightly more caudally. Altogether, these results suggest that cells located within the trigeminal descending tract and projecting to reticular nuclei are likely to be the sensory trigeminal relays to reticulospinal neurones in lampreys.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Neurons, Afferent / cytology
  • Neurons, Afferent / physiology*
  • Petromyzon / physiology*
  • Reticular Formation / cytology
  • Reticular Formation / physiology*
  • Spinal Cord / cytology
  • Spinal Cord / physiology*
  • Trigeminal Nerve / cytology
  • Trigeminal Nerve / physiology*