State-dependent sensory gating in olfactory cortex

Neuron. 2005 Apr 21;46(2):285-96. doi: 10.1016/j.neuron.2005.02.025.

Abstract

Sensory systems show behavioral state-dependent gating of information flow that largely depends on the thalamus. Here we examined whether the state-dependent gating occurs in the central olfactory pathway that lacks a thalamic relay. In urethane-anesthetized rats, neocortical EEG showed a periodical alternation between two states: a slow-wave state (SWS) characterized by large and slow waves and a fast-wave state (FWS) characterized by faster waves. Single-unit recordings from olfactory cortex neurons showed robust spike responses to adequate odorants during FWS, whereas they showed only weak responses during SWS. The state-dependent change in odorant-evoked responses was observed in a majority of olfactory cortex neurons, but in only a small percentage of olfactory bulb neurons. These findings demonstrate a powerful state-dependent gating of odor information in the olfactory cortex that works in synchrony with the gating of other sensory systems. They suggest a state-dependent switchover of signal processing modes in the olfactory cortex.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Electroencephalography
  • Male
  • Neocortex / physiology
  • Neurons / physiology*
  • Olfactory Bulb / physiology*
  • Olfactory Pathways / physiology*
  • Rats
  • Signal Transduction / physiology*
  • Smell / physiology*