Mechanisms underlying cross-orientation suppression in cat visual cortex

Nat Neurosci. 2006 Apr;9(4):552-61. doi: 10.1038/nn1660. Epub 2006 Mar 5.

Abstract

In simple cells of the cat primary visual cortex, null-oriented stimuli, which by themselves evoke no response, can completely suppress the spiking response to optimally oriented stimuli. This cross-orientation suppression has been interpreted as evidence for cross-orientation inhibition: synaptic inhibition among cortical cells with different preferred orientations. In intracellular recordings from simple cells, however, we found that cross-oriented stimuli suppressed, rather than enhanced, synaptic inhibition and, at the same time, suppressed synaptic excitation. Much of the suppression of excitation could be accounted for by the behavior of geniculate relay cells: contrast saturation and rectification in relay cell responses, when applied to a linear feed-forward model, predicted cross-orientation suppression of the modulation (F1) component of excitation evoked in simple cells. In addition, we found that the suppression of the spike output of simple cells was almost twice the suppression of their synaptic inputs. Thus, cross-orientation suppression, like orientation selectivity, is strongly amplified by threshold.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Cats
  • Geniculate Bodies / cytology
  • Geniculate Bodies / metabolism
  • Models, Biological
  • Neurons / metabolism
  • Patch-Clamp Techniques
  • Synapses / physiology
  • Synaptic Transmission / physiology
  • Visual Cortex / cytology
  • Visual Cortex / physiology*
  • Visual Perception / physiology*