The CB1 cannabinoid receptor mediates glutamatergic synaptic suppression in the hippocampus

Neuroscience. 2006;139(3):795-802. doi: 10.1016/j.neuroscience.2006.01.024. Epub 2006 Mar 9.

Abstract

Cannabinoids have profound effects on synaptic function and behavior. Of the two cloned cannabinoid receptors, cannabinoid receptor 1 (CB1) is widely distributed in the CNS and accounts for most of the neurological effects of cannabinoids, while cannabinoid receptor 2 (CB2) expression in the CNS is very limited. The presence of additional receptors [i.e. cannabinoid receptor 3 (CB3)] is suggested by growing evidence of cannabinoid effects that are not mediated by CB1 or CB2. The most direct functional evidence for a CB3 comes from a study in hippocampus where deletion of CB1 was shown to have no effect on cannabinoid-mediated suppression of the excitatory synapse between Schaffer collateral/commissural fibers and CA1 pyramidal cells [Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience 106:1-4]. In contrast, we report here that in extracellular field recordings, the cannabinoid agonist WIN 55,212-2 (5 microM) had no effect on Schaffer collateral/commissural fiber-CA1 pyramidal cell (Sch-CA1) synaptic transmission in slices from two independently made cannabinoid receptor 1-/- lines [Zimmer et al 1999 and Ledent et al 1999] while strongly suppressing Sch-CA1 synaptic transmission in CB1+/+ mice of the background strains. Also, we observed robust cannabinoid-mediated suppression of the Sch-CA1 synapse in pure C57BL/6 mice, contradicting a recent report that cannabinoid suppression of this synapse is absent in this strain [Hoffman AF, Macgill AM, Smith D, Oz M, Lupica CR (2005) Species and strain differences in the expression of a novel glutamate-modulating cannabinoid receptor in the rodent hippocampus. Eur J Neurosci 22:2387-2391]. Our results strongly suggest that cannabinoid-induced suppression of the Sch-CA1 synapse is mediated by CB1. Non-canonical cannabinoid receptors do not seem to play a major role in inhibiting transmitter release at this synapse.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Benzoxazines
  • Calcium Channel Blockers / pharmacology
  • Excitatory Postsynaptic Potentials / drug effects
  • Excitatory Postsynaptic Potentials / physiology
  • Female
  • Glutamine / metabolism
  • Hippocampus / drug effects
  • Hippocampus / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Morpholines / pharmacology
  • Naphthalenes / pharmacology
  • Organ Culture Techniques
  • Patch-Clamp Techniques
  • Receptor, Cannabinoid, CB1 / drug effects
  • Receptor, Cannabinoid, CB1 / metabolism*
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology*

Substances

  • Benzoxazines
  • Calcium Channel Blockers
  • Morpholines
  • Naphthalenes
  • Receptor, Cannabinoid, CB1
  • Glutamine
  • (3R)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone