The subjective visual vertical and the perceptual upright

Exp Brain Res. 2006 Sep;173(4):612-22. doi: 10.1007/s00221-006-0405-y. Epub 2006 Mar 21.

Abstract

The direction of 'up' has traditionally been measured by setting a line (luminous if necessary) to the apparent vertical, a direction known as the 'subjective visual vertical' (SVV); however for optimum performance in visual skills including reading and facial recognition, an object must to be seen the 'right way up'--a separate direction which we have called the 'perceptual upright' (PU). In order to measure the PU, we exploited the fact that some symbols rely upon their orientation for recognition. Observers indicated whether the symbol 'horizontal P' presented in various orientations was identified as either the letter 'p' or the letter 'd'. The average of the transitions between 'p-to-d' and 'd-to-p' interpretations was taken as the PU. We have labelled this new experimental technique the Oriented CHAracter Recognition Test (OCHART). The SVV was measured by estimating whether a line was rotated clockwise or counter-clockwise relative to gravity. We measured the PU and SVV while manipulating the orientation of the visual background in different observer postures: upright, right side down and (for the PU) supine. When the body, gravity and the visual background were aligned, the SVV and the PU were similar, but as the background orientation and observer posture orientations diverged, the two measures varied markedly. The SVV was closely aligned with the direction of gravity whereas the PU was closely aligned with the body axis. Both probes showed influences of all three cues (body orientation, vision and gravity) and these influences could be predicted from a weighted vectorial sum of the directions indicated by these cues. For the SVV, the ratio was 0.2:0.1:1.0 for the body, visual and gravity cues, respectively. For the PU, the ratio was 2.6:1.2:1.0. In the case of the PU, these same weighting values were also predicted by a measure of the reliability of each cue; however, reliability did not predict the weightings for the SVV. This is the first time that maximum likelihood estimation has been demonstrated in combining information between different reference frames. The OCHART technique provides a new, simple and readily applicable method for investigating the PU which complements the SVV. Our findings suggest that OCHART is particularly suitable for investigating the functioning of visual and non-visual systems and their contributions to the perceived upright of novel environments such as high- and low-g environments, and in patient and ageing populations, as well as for normal observers.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Female
  • Humans
  • Male
  • Middle Aged
  • Pattern Recognition, Visual*
  • Photic Stimulation
  • Posture*
  • Visual Perception*