Modulation of vertebrate neuronal calcium channels by transmitters

Brain Res Brain Res Rev. 1991 Sep-Dec;16(3):265-81. doi: 10.1016/0165-0173(91)90010-6.

Abstract

A large number of neurotransmitters have now been shown to reduce the amplitude and slow the activation kinetics of whole cell HVA ICa in a great diversity of neurons. These transmitters include L-glutamate (AMPA/kainate, metabotropic and NMDA receptors), GABA (via GABAB receptors, NA (via alpha 2 receptors), 5-HT, NA (via alpha 2 receptors), DA and several peptides. Both whole-cell and single-channel studies have demonstrated that the N-channel is the most common channel type to be blocked by transmitters, although an inhibition of the L-type channel has also occasionally been reported. The suppression of the N-type Ca current was commonly shown to be voltage-dependent, with a relief at large positive voltages. Strong evidence has been put forward showing that the transmitter action is mediated by a G-protein, with GDP-beta-S blocking transmitter action, and GTP-gamma-S directly inhibiting the Ca channel. Moreover, pertussis toxin blocked the transmitter action in most neurons, and following such block, injection of the G-protein Go restored transmitter action. A direct link between the G-protein and the Ca channel has been widely theorized to mediate the action of transmitters on certain neurons. There is also some evidence that certain transmitters in specific neurons mediate calcium channel inhibition through a 2nd messenger, perhaps protein kinase C. Transmitters have also been found, although uncommonly, to inhibit HVA L-type and LVA T-type channels. In addition, an enhancement of both HVA and LVA Ca currents by transmitters has been demonstrated, and substantial evidence exists for mediation of this action by cAMP.

Publication types

  • Review

MeSH terms

  • Animals
  • Calcium / physiology
  • Calcium Channels / physiology*
  • Humans
  • Neurons / drug effects
  • Neurons / metabolism*
  • Neurotransmitter Agents / physiology*

Substances

  • Calcium Channels
  • Neurotransmitter Agents
  • Calcium