Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones

J Physiol. 1990 May:424:151-65. doi: 10.1113/jphysiol.1990.sp018060.

Abstract

1. N-methyl-D-aspartate (NMDA)-, quisqualate- and kainate-induced currents were recorded in cultured rat hippocampal neurones using the whole-cell voltage-clamp technique. To isolate the inward currents carried by Ca2+ and other divalent cations (Sr2+, Ba2+, Mn2+ and Mg2+), both Na+ and K+ in the control external solution were replaced with the impermeant cation N-methylglucamine (NMG). 2. Replacement of Na+, K+ and Ca2+ with NMG abolished NMDA-, quisqualate- and kinate-induced inward currents. In Na(+)-, K(+)-free (abbreviated simply as Na(+)-free) solution containing 10 mM-Ca2+ NMDA caused prominent inward currents at -60 mV. In this solution with the internal solution containing 165 mM-Cs+, the reversal potential of the NMDA-induced current was -5.0 +/- 0.7 mV (n = 36), indicating a value of PCa/PCs = 6.2 for the ratio of the permeability coefficients of Ca2+ and Cs+ according to the constant-field equation. 3. NMDA elicited inward current responses at -60 mV in Na(+)-, Ca2(+)-free solution containing 10 mM-Sr2+, Ba2+, or Mn2+, but not in Na(+)-free, 10 mM-Mg2+ solution. On the basis of reversal potential measurements, the permeability sequence of NMDA receptor channels among the divalent cations was determined to be Ba2+ (1.2) greater than Ca2+ (1.0) greater than Sr2+ (0.8) greater than Mn2+ (0.3) much greater than Mg2+ (less than 0.02). 4. The reversal potential of the quisqualate-induced current was more negative than -80 mV in Na(+)-free, 10 mM-Ca2+ solution, indicating a value of PCa/PCs less than 0.18. 5. Kainate-induced current responses were classified into two types. In the type I response the reversal potential of the kainate-induced current was more negative than -80 mV in Na(+)-free, 10 mM-Ca2+ solution, indicating that the Ca2+ permeability of this type of kainate channel is as low as that of the quisqualate channel. In the neurones which showed a type I response, there was a tendency of outward rectification in the current-voltage plots of the kainate response in control solution. 6. In the type II response kainate caused prominent inward currents at -60 mV in Na(+)-free, 10 mM-Ca2+ solution. The reversal potential was -23.3 +/- 5.6 mV (n = 17), indicating a permeability ratio PCa/PCs = 2.3. In the neurones which showed a type II response, a remarkable inward rectification was observed in the current-voltage plots of the kainate response in control solution. 7. Type II kainate channels showed relatively poor selectivity among divalent cations.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Channels / metabolism*
  • Cations, Divalent / metabolism
  • Hippocampus / cytology*
  • Hippocampus / embryology
  • Ion Channel Gating*
  • Ion Channels*
  • Meglumine / metabolism
  • Neurons / metabolism*
  • Rats
  • Receptors, AMPA
  • Receptors, Kainic Acid
  • Receptors, N-Methyl-D-Aspartate
  • Receptors, Neurotransmitter / metabolism*

Substances

  • Calcium Channels
  • Cations, Divalent
  • Ion Channels
  • Receptors, AMPA
  • Receptors, Kainic Acid
  • Receptors, N-Methyl-D-Aspartate
  • Receptors, Neurotransmitter
  • Meglumine
  • Calcium