Role of type-specific neuron properties in a spinal cord motor network

J Comput Neurosci. 2007 Aug;23(1):59-77. doi: 10.1007/s10827-006-0019-1. Epub 2007 Jan 20.

Abstract

Recent recordings from spinal neurons in hatchling frog tadpoles allow their type-specific properties to be defined. Seven main types of neuron involved in the control of swimming have been characterized. To investigate the significance of type-specific properties, we build models of each neuron type and assemble them into a network using known connectivity between: sensory neurons, sensory pathway interneurons, central pattern generator (CPG) interneurons and motoneurons. A single stimulus to a sensory neuron initiates swimming where modelled neuronal and network activity parallels physiological activity. Substitution of firing properties between neuron types shows that those of excitatory CPG interneurons are critical for stable swimming. We suggest that type-specific neuronal properties can reflect the requirements for involvement in one particular network response (like swimming), but may also reflect the need to participate in more than one response (like swimming and slower struggling).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Models, Neurological*
  • Motor Neurons / classification*
  • Motor Neurons / physiology*
  • Nerve Net / physiology*
  • Neural Networks, Computer
  • Spinal Cord / cytology*