The representation of egomotion in the human brain

Curr Biol. 2008 Feb 12;18(3):191-4. doi: 10.1016/j.cub.2007.12.053. Epub 2008 Jan 24.

Abstract

An essential function of visual processing is to establish the position of the body in space and, in concert with the other sense systems, to monitor movement of the whole body, or "egomotion." A key cue to egomotion is optic flow. For example, forward motion through the environment generates an expanding pattern of flow on the retina, and (with eyes fixed centrally) the direction of heading corresponds to the center of expansion [1]. In macaques, visual cortical area MST is sensitive to optic-flow structure [2, 3], and it has been suggested that MST has a central role in the computation of heading [4]. However, here we identify two areas of the human brain that represent visual cues to egomotion more directly than does MST. These areas respond strongly to a single optic-flow stimulus but become relatively unresponsive when the stimulus is surrounded with further flow patches and thereby made inconsistent with egomotion. One is putative area VIP in the anterior portion of the intraparietal sulcus. The other is a new visual area, which we refer to as cingulate sulcus visual area (CSv). Areas V1-V4 and MT respond about equally to both types of flow stimulus. MST has intermediate properties, responding well to multiple patches but with a modest preference for a single, egomotion-compatible patch. We suggest that MST is merely an intermediate processing stage for visual cues to egomotion and that such cues are more comprehensively encoded by VIP and CSv.

MeSH terms

  • Humans
  • Motion Perception / physiology*
  • Visual Cortex / anatomy & histology
  • Visual Cortex / physiology*
  • Visual Pathways / anatomy & histology
  • Visual Pathways / physiology