Role of corticofugal feedback in hearing

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Feb;194(2):169-83. doi: 10.1007/s00359-007-0274-2. Epub 2008 Jan 29.

Abstract

The auditory system consists of the ascending and descending (corticofugal) systems. The corticofugal system forms multiple feedback loops. Repetitive acoustic or auditory cortical electric stimulation activates the cortical neural net and the corticofugal system and evokes cortical plastic changes as well as subcortical plastic changes. These changes are short-term and are specific to the properties of the acoustic stimulus or electrically stimulated cortical neurons. These plastic changes are modulated by the neuromodulatory system. When the acoustic stimulus becomes behaviorally relevant to the animal through auditory fear conditioning or when the cortical electric stimulation is paired with an electric stimulation of the cholinergic basal forebrain, the cortical plastic changes become larger and long-term, whereas the subcortical changes stay short-term, although they also become larger. Acetylcholine plays an essential role in augmenting the plastic changes and in producing long-term cortical changes. The corticofugal system has multiple functions. One of the most important functions is the improvement and adjustment (reorganization) of subcortical auditory signal processing for cortical signal processing.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Auditory Pathways / physiology*
  • Chiroptera
  • Ear, Inner / physiology
  • Feedback / physiology*
  • Hearing / physiology*
  • Neuronal Plasticity / physiology*
  • Neurons / physiology*