Neuropeptide organization of the hypothalamic projection to the parabrachial nucleus in the rat

J Comp Neurol. 1990 May 22;295(4):662-82. doi: 10.1002/cne.902950409.

Abstract

The hypothalamus is a major source of afferents to the parabrachial nucleus (PB), but the neurotransmitters in this pathway are largely unknown. In this study, we examine the neuropeptide immunoreactivities of neurons in the hypothalamus that project to the PB by using the combined retrograde fluorescence-immunofluorescence method. After injections of the fluorescent tracer fast blue into the PB, retrogradely labeled neurons were observed in the paraventricular, dorsomedial, ventromedial, median preoptic, and anteroventral periventricular hypothalamic nuclei; in the dorsal, retrochiasmatic, and lateral hypothalamic areas; and in the medial and lateral preoptic areas. Our results show that at least five distinct neuropeptide-immunoreactive cell populations in the hypothalamus project to the PB. In the perifornical lateral hypothalamus, many neurotensin (NT)-, corticotropin-releasing factor-, dynorphin (DYN)-, angiotensin II (AII)-, and galanin-like immunoreactive (-ir) neurons were retrogradely labeled. A cluster of retrogradely labeled neurons in the juxtacapsular lateral hypothalamus stained with an antiserum against alpha-melanocyte stimulating hormone (alpha MSH). Over 50% of the retrogradely labeled cells in the arcuate nucleus were adrenocorticotropin (ACTH)-or alpha MSH-ir. Many alpha MSH- and ACTH-ir, and a few DYN-, NT- and AII-ir neurons in the retrochiasmatic area were retrogradely labeled. Only small numbers of double-labeled neurons were found in the paraventricular nucleus, and, of these, enkephalin-ir and dynorphin-ir neurons were the most common. Somatostatin-ir cells in the hypothalamus were rarely double-labeled. The chemical coding of these hypothalamic projections to the PB may provide important clues to the functional organization of these descending pathways.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Corticotropin-Releasing Hormone / metabolism*
  • Dynorphins / metabolism*
  • Hypothalamus / cytology
  • Hypothalamus / metabolism*
  • Immunohistochemistry
  • Male
  • Neural Pathways / anatomy & histology
  • Neural Pathways / metabolism
  • Neuropeptides / metabolism*
  • Neurotensin / metabolism*
  • Pons / cytology
  • Pons / metabolism*
  • Rats

Substances

  • Neuropeptides
  • Neurotensin
  • Dynorphins
  • Corticotropin-Releasing Hormone