Steady-state visually evoked potentials: focus on essential paradigms and future perspectives

Prog Neurobiol. 2010 Apr;90(4):418-38. doi: 10.1016/j.pneurobio.2009.11.005. Epub 2009 Dec 4.

Abstract

After 40 years of investigation, steady-state visually evoked potentials (SSVEPs) have been shown to be useful for many paradigms in cognitive (visual attention, binocular rivalry, working memory, and brain rhythms) and clinical neuroscience (aging, neurodegenerative disorders, schizophrenia, ophthalmic pathologies, migraine, autism, depression, anxiety, stress, and epilepsy). Recently, in engineering, SSVEPs found a novel application for SSVEP-driven brain-computer interface (BCI) systems. Although some SSVEP properties are well documented, many questions are still hotly debated. We provide an overview of recent SSVEP studies in neuroscience (using implanted and scalp EEG, fMRI, or PET), with the perspective of modern theories about the visual pathway. We investigate the steady-state evoked activity, its properties, and the mechanisms behind SSVEP generation. Next, we describe the SSVEP-BCI paradigm and review recently developed SSVEP-based BCI systems. Lastly, we outline future research directions related to basic and applied aspects of SSVEPs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain Diseases / physiopathology
  • Brain Mapping / methods
  • Cognition / physiology
  • Electroencephalography*
  • Evoked Potentials, Visual / physiology*
  • Humans
  • Vision, Binocular / physiology
  • Visual Cortex / anatomy & histology
  • Visual Cortex / physiology*
  • Visual Pathways / anatomy & histology
  • Visual Pathways / physiology*
  • Visual Perception / physiology