Cell-based transplantation strategies to promote plasticity following spinal cord injury

Exp Neurol. 2012 May;235(1):78-90. doi: 10.1016/j.expneurol.2011.02.010. Epub 2011 Feb 17.

Abstract

Cell transplantation therapy holds potential for repair and functional plasticity following spinal cord injury (SCI). Stem and progenitor cells are capable of modifying the lesion environment, providing structural support and myelination and increasing neurotrophic factors for neuroprotection and endogenous activation. Through these effects, transplanted cells induce plasticity in the injured spinal cord by promoting axonal elongation and collateral sprouting, remyelination, synapse formation and reduced retrograde axonal degeneration. In light of these beneficial effects, cell transplantation could be combined with other treatment modalities, such as rehabilitation and immune modulation, to provide a synergistic functional benefit. This review will delineate 1) stem/progenitor cell types proposed for cell transplantation in SCI, 2) in vitro evidence of cell-induced mechanisms of plasticity, 3) promotion of functional recovery in animal models of SCI, 4) successful combinatorial strategies using cell transplantation. Current treatment modalities for SCI provide modest efficacy, especially in chronic stages of SCI. Hence, combinatorial stem cell transplantation strategies which could potentially directly address tissue sparing and neuroplasticity in chronic SCI show promise. Rigorous evaluation of combinatorial approaches using stem cell transplantation with appropriate preclinical animal models of SCI is needed to advance therapeutic strategies to the point where clinical trials are appropriate. Given the high patient demand for and clinical trial precedent of cell transplantation therapy, combination stem cell therapies have the promise to provide improved quality of life for individuals, with corresponding socioeconomic benefit.

Publication types

  • Review

MeSH terms

  • Animals
  • Bone Marrow Transplantation / methods*
  • Nerve Regeneration / physiology*
  • Neuronal Plasticity / physiology*
  • Recovery of Function / physiology*
  • Schwann Cells / transplantation*
  • Spinal Cord Injuries / physiopathology
  • Spinal Cord Injuries / surgery*
  • Stem Cell Transplantation / methods*