Tryptophan scanning mutagenesis of the first transmembrane domain of the innexin Shaking-B(Lethal)

Biophys J. 2011 Nov 16;101(10):2408-16. doi: 10.1016/j.bpj.2011.10.004. Epub 2011 Nov 15.

Abstract

The channel proteins of gap junctions are encoded by two distinct gene families, connexins, which are exclusive to chordates, and innexins/pannexins, which are found throughout the animal kingdom. Although the relationship between the primary structure and function of the vertebrate connexins has been relatively well studied, there are, to our knowledge, no structure-function analyses of invertebrate innexins. In the first such study, we have used tryptophan scanning to probe the first transmembrane domain (M1) of the Drosophila innexin Shaking-B(Lethal), which is a component of rectifying electrical synapses in the Giant Fiber escape neural circuit. Tryptophan was substituted sequentially for 16 amino acids within M1 of Shaking-B(Lethal). Tryptophan insertion at every fourth residue (H27, T31, L35, and S39) disrupted gap junction function. The distribution of these sites is consistent with helical secondary structure and identifies the face of M1 involved in helix-helix interactions. Tryptophan substitution at several sites in M1 altered channel properties in a variety of ways. Changes in sensitivity to transjunctional voltage (Vj) were common and one mutation (S39W) induced sensitivity to transmembrane voltage (Vm). In addition, several mutations induced hemichannel activity. These changes are similar to those observed after substitutions within the transmembrane domains of connexins.

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution / genetics
  • Animals
  • Cell Membrane / metabolism*
  • Connexins / chemistry
  • Connexins / genetics*
  • Connexins / metabolism
  • Drosophila Proteins / chemistry*
  • Drosophila Proteins / genetics*
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster / metabolism*
  • Electricity
  • Female
  • Gap Junctions / metabolism
  • Ion Channel Gating
  • Molecular Sequence Data
  • Mutagenesis / genetics*
  • Mutagenesis, Insertional
  • Mutant Proteins / chemistry
  • Mutant Proteins / metabolism
  • Nerve Tissue Proteins / chemistry*
  • Nerve Tissue Proteins / genetics*
  • Nerve Tissue Proteins / metabolism
  • Oocytes / metabolism
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Tryptophan / genetics*
  • Xenopus

Substances

  • Connexins
  • Drosophila Proteins
  • Mutant Proteins
  • Nerve Tissue Proteins
  • shakB protein, Drosophila
  • Tryptophan