Building retinal connectomes

Curr Opin Neurobiol. 2012 Aug;22(4):568-74. doi: 10.1016/j.conb.2012.03.011. Epub 2012 Apr 11.

Abstract

Understanding vertebrate vision depends on knowing, in part, the complete network graph of at least one representative retina. Acquiring such graphs is the business of synaptic connectomics, emerging as a practical technology due to improvements in electron imaging platform control, management software for large-scale datasets, and availability of data storage. The optimal strategy for building complete connectomes uses transmission electron imaging with 2 nm or better resolution, molecular tags for cell identification, open-access data volumes for navigation, and annotation with open-source tools to build 3D cell libraries, complete network diagrams and connectivity databases. The first forays into retinal connectomics have shown that even nominally well-studied cells have much richer connection graphs than expected.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Connectome*
  • Humans
  • Models, Neurological
  • Nerve Net / physiology*
  • Nerve Net / ultrastructure
  • Retina / anatomy & histology*
  • Visual Pathways / physiology*
  • Visual Pathways / ultrastructure