Specialization of reach function in human posterior parietal cortex

Exp Brain Res. 2012 Aug;221(1):1-18. doi: 10.1007/s00221-012-3158-9. Epub 2012 Jul 10.

Abstract

Posterior parietal cortex (PPC) plays an important role in the planning and control of goal-directed action. Single-unit studies in monkeys have identified reach-specific areas in the PPC, but the degree of effector and computational specificity for reach in the corresponding human regions is still under debate. Here, we review converging evidence spanning functional neuroimaging, parietal patient and transcranial magnetic stimulation studies in humans that suggests a functional topography for reach within human PPC. We contrast reach to saccade and grasp regions to distinguish functional specificity and also to understand how these different goal-directed actions might be coordinated at the cortical level. First, we present the current evidence for reach specificity in distinct modules in PPC, namely superior parietal occipital cortex, midposterior intraparietal cortex and angular gyrus, compared to saccade and grasp. Second, we review the evidence for hemispheric lateralization (both for hand and visual hemifield) in these reach representations. Third, we review evidence for computational reach specificity in these regions and finally propose a functional framework for these human PPC reach modules that includes (1) a distinction between the encoding of reach goals in posterior-medial PPC as opposed to reach movement vectors in more anterior-lateral PPC regions, and (2) their integration within a broader cortical framework for reach, grasp and eye-hand coordination. These findings represent both a confirmation and extension of findings that were previously reported for the monkey.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Brain Mapping
  • Functional Laterality
  • Goals
  • Hand Strength / physiology
  • Humans
  • Movement / physiology*
  • Neuroimaging
  • Parietal Lobe / anatomy & histology
  • Parietal Lobe / physiology*
  • Photic Stimulation
  • Psychomotor Performance / physiology*
  • Saccades / physiology
  • Transcranial Magnetic Stimulation