Retrosplenial cortex codes for permanent landmarks

PLoS One. 2012;7(8):e43620. doi: 10.1371/journal.pone.0043620. Epub 2012 Aug 17.

Abstract

Landmarks are critical components of our internal representation of the environment, yet their specific properties are rarely studied, and little is known about how they are processed in the brain. Here we characterised a large set of landmarks along a range of features that included size, visual salience, navigational utility, and permanence. When human participants viewed images of these single landmarks during functional magnetic resonance imaging (fMRI), parahippocampal cortex (PHC) and retrosplenial cortex (RSC) were both engaged by landmark features, but in different ways. PHC responded to a range of landmark attributes, while RSC was engaged by only the most permanent landmarks. Furthermore, when participants were divided into good and poor navigators, the latter were significantly less reliable at identifying the most permanent landmarks, and had reduced responses in RSC and anterodorsal thalamus when viewing such landmarks. The RSC has been widely implicated in navigation but its precise role remains uncertain. Our findings suggest that a primary function of the RSC may be to process the most stable features in an environment, and this could be a prerequisite for successful navigation.

Publication types

  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain Mapping
  • Cerebral Cortex / anatomy & histology
  • Cerebral Cortex / physiology*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Pattern Recognition, Visual / physiology*
  • Photic Stimulation
  • Psychomotor Performance / physiology
  • Space Perception / physiology*
  • Spatial Behavior / physiology*
  • Young Adult