Calcium channels reconstituted from the skeletal muscle dihydropyridine receptor protein complex and its alpha 1 peptide subunit in lipid bilayers

Ann N Y Acad Sci. 1989:560:138-54. doi: 10.1111/j.1749-6632.1989.tb24091.x.

Abstract

In the first part of this study, we show that sDHPR and pDHPR preparations reconstituted into lipid bilayers formed on the tips of patch pipettes exhibit two divalent cation-selective conductance levels of 9 and 20 pS, similar in single-channel conductance to VSCC reported in a variety of intact preparations (see Pelzer et al. and Tsien et al. for review). The larger conductance level is similar to the VSCC identified in intact rat t-tubule membranes and described in sDHPR and pDHPR preparations, and shares many properties in common with activity from L-type VSCC. It is sensitive to augmentation by the DHP agonist (+/-)-BAY K 8644 and cAMP-dependent phosphorylation, and to block by the phenylalkylamine (+/-)-D600 and the inorganic blocker CoCl2. Its open-state probability and open times are increased upon depolarization as expected for a voltage-dependent activation process. Upon depolarization beyond the reversal potential, however, open-state probability and open times decline again. A reasonable way to explain the bell-shaped dependence of open times and open-state probability on membrane potential is to assume voltage-dependent ion-pore interactions that produce closing of the channel at strong negative and positive membrane potentials. By contrast, the smaller conductance level may be similar to the 10.6-pS t-tubule VSCC described by Rosenberg et al. and may best be compared with T-type VSCC. It is largely resistant to augmentation by (+/-)-BAY K 8644 and cAMP-dependent phosphorylation or block by (+/-)-D600, but is sensitive to block by CoCl2. Its open times and open-state probability show a sole dependence on membrane potential where depolarization increases both parameters sigmoidally from close to zero up to a saturating level. Both elementary conductance levels do not exhibit significant inactivation over a wide potential range, which may suggest that skeletal muscle VSCC inactivation is either poorly or not voltage-dependent at all. This possibility seems in agreement with bilayer recordings on reconstituted intact t-tubule membranes and voltage-clamp recordings on intact fibers. It supports the idea that the decline of Ca2+ current in intact skeletal muscle fibers may be due to Ca2+ depletion from the t-tubule system and/or to inactivation induced by Ca2+ release from the sarcoplasmic reticulum. We consistently observe two conductance levels of 9 and 20 pS, either singly, or together in the same bilayer from solubilized DHPR samples and even highly purified DHPR preparations.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester / pharmacology
  • Animals
  • Calcium Channel Blockers
  • Calcium Channels / physiology*
  • Cattle
  • Cobalt / pharmacology
  • Cyclic AMP / pharmacology
  • Electric Conductivity
  • Gallopamil / pharmacology
  • Kinetics
  • Lipid Bilayers / metabolism*
  • Muscles / physiology*
  • Phosphorylation
  • Protein Kinases / metabolism
  • Rabbits
  • Receptors, Nicotinic / physiology*

Substances

  • Calcium Channel Blockers
  • Calcium Channels
  • Lipid Bilayers
  • Receptors, Nicotinic
  • Gallopamil
  • Cobalt
  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
  • Cyclic AMP
  • Protein Kinases
  • cobaltous chloride