Convergence of genes and cellular pathways dysregulated in autism spectrum disorders

Am J Hum Genet. 2014 May 1;94(5):677-94. doi: 10.1016/j.ajhg.2014.03.018. Epub 2014 Apr 24.

Abstract

Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Child
  • Child Development Disorders, Pervasive / genetics*
  • DNA Copy Number Variations*
  • Female
  • Gene Regulatory Networks
  • Humans
  • Male
  • Metabolic Networks and Pathways / genetics*
  • Multigene Family
  • Pedigree
  • Sequence Deletion