Changes in membrane currents of hippocampal neurons evoked by brief anoxia

J Neurophysiol. 1989 Jul;62(1):15-30. doi: 10.1152/jn.1989.62.1.15.

Abstract

1. Effects of anoxia (2-4 min of 95% N2-5% CO2) on membrane currents of CA1 neurons were studied by single-electrode voltage clamp in hippocampal slices (from Sprague-Dawley rats) kept in an interface-type chamber at 33.5 degree. 2. When recording with KCl electrodes at a holding potential (VH) near-70 mV, anoxia evoked a slow outward current [0.18 +/- 0.06 (SE) nA], accompanied by a conductance increase ( + 46 +/- 20%, mean +/- SE). The difference current evoked by N2 had a reversal potential near-100 mV. It was much smaller in presence of 2-4 mM extracellular Cs, and any remaining outward current was abolished by 10 mM tetraethylammonium (TEA). Only inward currents were observed when recording with CsCl electrodes. 3. Inward relaxations evoked by large hyperpolarizing pulses from VH less than or equal to - 70 mV (Q-type) were not significantly depressed by anoxia (-1.5 +/- 6.0%). 4. Some voltage-dependent outward currents (evoked by 200-ms depolarizing pulses) were depressed during anoxia: 1) a fast-inactivating (A-like) current, obtained at VH less than or equal to -70 mV and suppressed by 200 microM 4-AP, was reduced by 25.6 +/- 7.3% (n = 5); 2) a slower, noninactivating (C-like) current, suppressed by TEA, was reduced by 52 +/- 7.2% (n = 16). Neither of these currents (1 or 2) was observed when recording with 2- to 3-M CsCl electrodes; and 3) small (M-like) inward relaxations, observed at VH approximately -40 mV 5. Net inward currents could be evoked after blockage of GK with 10 mM TEA when recording with KCl electrodes or by recording with CsCl electrodes. At VH less than or equal to -70 mV, large, transient, and incompletely controlled currents were evoked by depolarizing pulses; at VH less than or equal to -50 mV, smaller and more persistent currents were evoked by depolarizing pulses (L-like), and transient currents (T-like?) were seen immediately after hyperpolarizing pulses. 6.L-type currents (at VH less than or equal to -50 mV) were nearly abolished after 1-2 min anoxia (by approximately 90%). This was equally true of the currents evoked by constant pulses or peak currents in I-V plots. After reoxygenation, recovery was biphasic, with a quick early phase (to 50-80% in 2 min) and then a much slower one (to 60-90% by 10-15 min).(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Membrane / physiology
  • Electric Stimulation
  • Hippocampus / cytology*
  • Hippocampus / physiopathology
  • Hypoxia / physiopathology*
  • Membrane Potentials / drug effects
  • Neurons / physiology
  • Nitrogen / pharmacokinetics
  • Rats
  • Rats, Inbred Strains
  • Time Factors

Substances

  • Nitrogen