A putative M3 muscarinic cholinergic receptor of high molecular weight couples to phosphoinositide hydrolysis in human SK-N-SH neuroblastoma cells

J Neurochem. 1988 Mar;50(3):984-7. doi: 10.1111/j.1471-4159.1988.tb03008.x.

Abstract

The M1-selective (high affinity for pirenzepine) muscarinic acetylcholine receptor (mAChR) antagonist pirenzepine displaced both N-[3H]methylscopolamine [( 3H]NMS) and [3H]quinuclidinylbenzilate from intact human SK-N-SH neuroblastoma cells with a low affinity (Ki = 869-1,066 nM), a result indicating the predominance of the M2 or M3 (low affinity for pirenzepine) receptor subtype in these cells. Whereas a selective M2 agent, AF-DX 116 [11-2[[2-[(diethylamino)methyl]-1-piperidinyl]- acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) bound to the mAChRs with a very low affinity (Ki = 6.0 microM), 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), an agent that binds with high affinity to the M3 subtype, potently inhibited [3H]NMS binding (Ki = 7.2 nM). 4-DAMP was also 1,000-fold more effective than AF-DX 116 at blocking stimulated phosphoinositide (PPI) hydrolysis in these cells. Covalent labeling studies (with [3H]propylbenzilycholine mustard) suggest that the size of the SK-N-SH mAChR (Mr = 81,000-98,000) distinguishes it from the predominant mAChR species in rat cerebral cortex (Mr = 66,000), an M1-enriched tissue. These results provide the first demonstration of a neural M3 mAChR subtype that couples to PPI turnover.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cerebral Cortex / cytology
  • Cerebral Cortex / metabolism
  • Humans
  • Hydrolysis
  • Molecular Weight
  • Neuroblastoma / metabolism*
  • Phosphatidylinositols / metabolism*
  • Rats
  • Receptors, Muscarinic / metabolism*
  • Tumor Cells, Cultured

Substances

  • Phosphatidylinositols
  • Receptors, Muscarinic