Dissociation of the lateral and medial cerebellum in movement timing and movement execution

Exp Brain Res. 1988;73(1):167-80. doi: 10.1007/BF00279670.

Abstract

In a previous study (Ivry and Keele, in press), cerebellar patients were found to be impaired on both a motor and a perceptual task which required accurate timing. This report presents case study analyses of seven patients with focal lesions in the cerebellum. The lesions were predominantly in the lateral, hemispheric regions for four of the patients. For the remaining three patients, the lesions were centered near the medial zone of the cerebellum. The clinical evaluation of the patients also was in agreement with the different lesion foci: lateral lesions primarily impaired fine motor coordination, especially apparent in movements with the distal extremities and medial lesions primarily disturbed balance and gait. All of the patients were found to have increased variability in performing rhythmic tapping when tapping with an effector (finger or foot) ipsilateral to the lesion in comparison to their performance with a contralateral effector. Separable estimates of a central timekeeper component and an implementation component were derived from the total variability scores following a model developed by Wing and Kristofferson (1973). This analysis indicated that the poor performance of patients with lateral lesions can be attributed to a deficit in the central timing process. In contrast, patients with medial lesions are able to accurately determine when to make a response, but are unable to implement the response at the desired time. A similar dissociation between the lateral and medial regions has been observed on a time perception task in patients with cerebellar atrophy. It is concluded that the lateral regions of the cerebellum are critical for the accurate functioning of an internal timing system.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Aged
  • Cerebellar Diseases / diagnostic imaging
  • Cerebellar Diseases / physiopathology*
  • Cerebellum / physiology*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Psychomotor Performance / physiology*
  • Reaction Time / physiology*
  • Tomography, X-Ray Computed