The primary visual cortex in the mouse: receptive field properties and functional organization

Exp Brain Res. 1988;69(3):594-612. doi: 10.1007/BF00247312.

Abstract

Receptive field (RF) characteristics of cells in primary visual cortex of the mouse (C57B16 strain) were studied by single unit recording. We have studied the functional organization of area 17 along both the radial and tangential dimensions of the cortex. Eighty seven percent of the visual neurons could be classified according to their responses to oriented stimuli and to moving stimuli. Cells which preferred a flashed or moving bar of a particular orientation and responded less well to bars of other orientations or to spots, were classified as orientation selective (simple RF 23%, complex RF 18%). The majority of them were, moreover, unidirectional (24%). All orientations were roughly equally represented. Cells with oriented RFs were recorded mostly in the upper part of cortical layers II-III, where they appeared to be clustered according to their preferred orientation. Neurons that responded equally well to spots and bars of all orientations (46%) were classified as "non-oriented"; among these neurons there were several subcategories. Cells which responded equally well to spots and bars but preferred stimuli moving along one or both directions of a particular axis were classified as non oriented asymmetric cells (unidirectional 14%, bidirectional 4%). They were recorded mainly in supra- and infra-granular layers. Cells unaffected by stimulus shape and orientation which responded equally well to all directions of movement were classified as symmetric units. They had receptive field classified as ON (11%), OFF (1%), ON/OFF (11%), or were unresponsive to stationary stimuli (5%). These cells were mostly found in layer IV, in which they constituted the majority of recorded cells. There was no apparent correlation between the functional type and size of RFs. However, the greatest proportion of small RFs was found in layer IV. In the binocular segment of the mouse striate cortex, the influence of the contralateral eye predominated. Ninety five percent of cells in this segment were driven through the contralateral eye. However, 70% of cells were binocularly activated, showing that considerable binocular integration occurred in this cortical segment. Ocular dominance varied less along the radial than along the tangential dimension of the cortex.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Electrophysiology
  • Functional Laterality
  • Mice / physiology*
  • Mice, Inbred C57BL
  • Neurons / physiology
  • Ocular Physiological Phenomena
  • Visual Cortex / cytology
  • Visual Cortex / physiology*