Evidence for a supplementary eye field

J Neurophysiol. 1987 Jan;57(1):179-200. doi: 10.1152/jn.1987.57.1.179.

Abstract

Electrical microstimulation and unit recording were performed in dorsomedial frontal cortex of four alert monkeys to identify an oculomotor area whose existence had been postulated rostral to the supplementary motor area. Contraversive saccades were evoked from 129 sites by stimulation. Threshold currents were lower than 20 microA in half the tests. Response latencies were usually longer than 50 ms (minimum: 30 ms). Eye movements were occasionally accompanied by blinks, ear, or neck movements. The cortical area yielding these movements was at the superior edge of the frontal lobe just rostral to the region from which limb movements could be elicited. Depending on the site of stimulation, saccades varied between two extremes: from having rather uniform direction and size, to converging toward a goal defined in space. The transition between these extremes was gradual with no evidence that these two types were fundamentally different. From surface to depth of cortex, direction and amplitude of evoked saccades were similar or changed progressively. No clear systematization was found depending on location along rostrocaudal or mediolateral axes of the cortex. The dorsomedial oculomotor area mapped was approximately 7 mm long and 6 mm wide. Combined eye and head movements were elicited from one of ten sites stimulated when the head was unrestrained. In the other nine cases, saccades were not accompanied by head rotation, even when higher currents or longer stimulus trains were applied. Presaccadic unit activity was recorded from 62 cells. Each of these cells had a preferred direction that corresponded to the direction of the movement evoked by local microstimulation. Presaccadic activity occurred with self-initiated as well as visually triggered saccades. It often led self-initiated saccades by more than 300 ms. Recordings made with the head free showed that the firing could not be interpreted as due to attempted head movements. Many dorsomedial cortical neurons responded to photic stimuli, either phasically or tonically. Sustained responses (activation or inhibition) were observed during target fixation. Twenty-one presaccadic units showed tonic changes of activity with fixation. Justification is given for considering the cortical area studied as a supplementary eye field. It shares many common properties with the arcuate frontal eye field. Differences noted in this study include: longer latency of response to electrical stimulation, possibility to evoke saccades converging apparently toward a goal, and long-lead unit activity with spontaneous saccades.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Electric Stimulation
  • Evoked Potentials, Visual
  • Eye Movements*
  • Frontal Lobe / anatomy & histology
  • Frontal Lobe / physiology*
  • Macaca nemestrina
  • Photic Stimulation
  • Saccades*