Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds

Hear Res. 1987;27(2):129-43. doi: 10.1016/0378-5955(87)90014-1.

Abstract

The temporal pattern of the responses of neurons in the inferior colliculus of the anesthetized rat were studied using continuous tone or noise carrier signals, amplitude modulated by pseudorandom noise. Period histograms of the responses, cross-correlated with the pseudorandom noise, gave an estimate of the unit's impulse responses to modulation. The amplitude-modulation rate transfer function (MTF) was obtained by Fourier transforming the correlograms. At sound levels within approximately 15 dB of the unit threshold, the MTFs were near lowpass functions between 6 and 200 Hz but became more bandpass-like as the intensity was increased. There was a steep decline in the response to modulation at modulation frequencies above 200 Hz for all stimulus intensities. For the bandpass-type MTFs the greatest modulation of the discharge pattern occurred at modulation frequencies between 10 and 200 Hz with a maximum in the distribution of MTF peak values between 100 and 120 Hz. There was no consistent relationship with characteristic frequency of either the position of the MTF peak or the high-frequency cutoff of the MTF. The cross-correlograms obtained at high stimulus intensities (30-60 dB above threshold) often showed a negative peak, representing a decrease in the probability of firing in response to intensity increments in the stimulus, and denoting a nonmonotonic rate-intensity function. The MTFs for units responding to amplitude-modulated broadband noise were often flatter in the low frequency region than those generated with tone carriers at corresponding intensities. For some units addition of a broadband noise background to the modulated tone changed the response characteristic of the MTF from bandpass to lowpass and shifted the MTF peak to a lower modulation frequency. The results demonstrate that although neurons in the inferior colliculus are selectively sensitive to the modulation frequency of dynamic stimuli, the response characteristics are not invariant, but instead are closely dependent on the conditions under which the modulation is presented.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Auditory Perception / physiology*
  • Female
  • Inferior Colliculi / physiology*
  • Loudness Perception / physiology
  • Neurons / physiology*
  • Noise
  • Pitch Perception / physiology
  • Rats
  • Rats, Inbred Strains