Effects of cooling somatosensory cortex on response properties of tactile cells in the superior colliculus

J Neurophysiol. 1986 Jun;55(6):1352-68. doi: 10.1152/jn.1986.55.6.1352.

Abstract

The corticotectal influences of somatosensory cortex were investigated by using reversible deactivation of cortex by cooling. More than half of the somatosensory superior colliculus (SC) cells studied exhibited a response depression (often not apparent qualitatively) or an elimination of responses to somatosensory stimuli during the period in which cortex was rendered inactive. Responses were restored to their initial levels by cortical rewarming. Hyperresponsiveness was never observed as a consequence of cortical cooling. Susceptibility to cooling-induced depression was not invariably linked to a specific cell type, location in the SC, or receptive-field size. Yet cells that had small receptive fields and were activated by hair displacement had the highest probability of being affected by this procedure. In some cells a contraction of the receptive field was induced by cortical cooling. This observation is consistent with previous experiments that showed that SC somatosensory receptive fields are constructed by the convergence of ascending and descending inputs and indicates that the responsiveness of specific receptive-field regions may depend on the functional integrity of cortex. Two cortical regions were found to produce cooling-induced effects in somatosensory SC cells: 1) SIV (and para-SIV), located in the anterior ectosylvian sulcus, and 2) the cortex within the rostral suprasylvian sulcus. These results indicate that somatosensory cortex, like visual cortex, plays a critical role in modulating the responses of SC cells. Apparently, the ability of both somatosensory and visual SC cells to code the presence of peripheral stimuli depends largely on the functional influences of their respective cortices. However, in contrast to previous observations on visual corticotectal influences, no specific receptive-field properties could be shown to be impressed on SC cells by somatosensory cortex.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain Mapping
  • Cats
  • Evoked Potentials, Somatosensory
  • Hypothermia, Induced
  • Neural Pathways / physiology
  • Skin / innervation
  • Somatosensory Cortex / physiology*
  • Superior Colliculi / physiology*
  • Touch / physiology*