Organization and postnatal development of callosal connections in the visual cortex of the rat

J Comp Neurol. 1985 Sep 1;239(1):1-26. doi: 10.1002/cne.902390102.

Abstract

The distribution of callosal cells and terminals was studied in the posterior neocortex of pups whose ages ranged from 3 to 16 days and in adult rats 2 months of age or older. Callosal cells and terminations were revealed using retrograde (horseradish peroxidase) and anterograde (horseradish peroxidase; tritiated proline) tracing techniques, respectively, and the distribution of callosal connections was analyzed in tangential or coronal histological sections. In agreement with previous studies, we observed that the pattern of callosal connections in areas 17 and 18 of adult rats contains the following features: (1) a dense band of callosal cells and terminations separating the interiors of areas 17 and 18a, (2) a ringlike configuration anterolateral to area 17, (3) a region of dense labeling lateral to area 18a, (4) several narrow bands of labeling that bridge area 18a at different anteroposterior levels, and (5) one or more labeled regions in area 18b. In all these callosal regions, labeled cells and terminations are densely aggregated in layers II-III, Va, and Vc-VIa, and less densely in layer IV and the remaining portions of layers V and VI. High densities of isotope-labeled fibers are also observed in the lower half of layer I. Throughout the interiors of areas 17 and 18a, a significant number of labeled cells are observed in layers Vc-VIa. In contrast to adult rats, in neonates no distinct tangential pattern of callosal connections is apparent. Instead, labeled cells are densely aggregated in two continuous horizontal bands located in cortical layers Va and Vc-VIa, and callosal axons are largely restricted to white matter. During the first 2 postnatal weeks there is a progressive loss of callosal cells in regions that normally have few callosal cells in the adult (e.g., interiors of areas 17 and 18a) and an increase in the number of cells in layers II-IV in regions that are densely callosal in the adult (e.g., callosal regions at the 17/18a border, lateral border of area 18a, and in area 18b). The decrease in the number of callosal cells in the interiors of areas 17 and 18a is more severe in the upper than in the lower band of the immature labeling pattern, and our data from tangential sections indicate that this loss of callosal neurons occurs synchronously across the interiors of these areas. During this period there is also a localized invasion of labeled callosal axons into those regions of gray matter where they will be found in adult life.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Autoradiography
  • Corpus Callosum / anatomy & histology*
  • Corpus Callosum / growth & development
  • Rats
  • Thalamic Nuclei / growth & development
  • Visual Cortex / anatomy & histology*
  • Visual Cortex / growth & development
  • Visual Pathways / anatomy & histology