The effect of peripheral nerve injury on dorsal root potentials and on transmission of afferent signals into the spinal cord

Brain Res. 1981 Mar 23;209(1):95-111. doi: 10.1016/0006-8993(81)91174-4.

Abstract

The sciatic nerve of adult rats was either cut and ligated or was crushed on one side. The response of the spinal cord to stimulation of the proximal part of the injured nerve was examined at various times after the lesion and compared to the effects of stimulating the intact nerve on the other side. During the first 10 days after nerve section the following measures were not affected: (i) the size of the input volley (compound action potential, CAP, measured on a dorsal root that carried sciatic nerve afferents (L5); (ii) the volley running in the dorsal columns; (iii) the dorsal root potential (DRP) evoked on neighbouring dorsal roots which do not contain sciatic afferents (L2 and L3); (iv) the post-synaptic volleys ascending in the spinal cord. However, by the fourth day after nerve section, there was a decrease of the DRP evoked on the ipsilateral L5 dorsal root by stimulation of the cut nerve. By 10 days this DRP had decreased by 50%. There was also a decrease in the DRP on the L5 root evoked by stimulation of the contralateral intact nerve. Crush lesions of the sciatic nerve did not produce DRP change. Beginning 10--20 days after nerve cut, there was a decrease in the amplitude of the afferent CAP and of all the measures of central response to the afferent volley. We discuss the possibility that the loss of the DRP may be associated with a disinhibition which results in novel receptive fields which we observe in cord cells deafferented by the peripheral nerve section. The decrease of DRP and the appearance of novel receptive fields do not occur if the peripheral nerve is crushed rather than cut.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Afferent Pathways / physiology
  • Animals
  • Electric Stimulation
  • Evoked Potentials
  • Ganglia, Spinal / physiology*
  • Ligation
  • Male
  • Nerve Crush
  • Nerve Regeneration*
  • Rats
  • Sciatic Nerve / physiology*
  • Spinal Cord / physiology*
  • Synaptic Transmission*