Direct and indirect visual inputs to superficial layers of cat superior colliculus: a current source-density analysis of electrically evoked potentials

J Neurophysiol. 1983 May;49(5):1075-91. doi: 10.1152/jn.1983.49.5.1075.

Abstract

1. The spatiotemporal pattern of visual inputs to the stratum griseum superficiale (SGS) and stratum opticum (SO) of the cat superior colliculus (SC) has been determined by an analysis of the current sinks occurring during postsynaptic activity following stimulation of each optic nerve (ON) and the optic chiasm (OX). Electrolytic lesions were used to determine the locations of the five major current sinks. 2. Direct SC afferents from the contralateral ON induced three current sinks whose maxima were located a) in the upper part of the SGS, b) in the middle part of the SGS, and c) in the lower part of the SGS and upper part of the SO. These three sinks were generated by three afferent fiber groups conducting in the optic nerve with modal and maximum velocities, respectively, of a) 4 and 5 m/s (slow W-group), b) 7 and 10 m/s (fast W-group), and c) 32 and 43 m/s (Y-group). 3. Indirect SC inputs from the contralateral ON via the ipsilateral visual cortex were identified by comparing the pattern of current sinks generated by OX stimulation before and after cortical ablation. The most prominent and fastest indirect sink (Y-group) was found in ;the lower half of the SGS and uppermost part of the SO. Low-amplitude, long-latency indirect current sinks were also found in the upper and lower thirds of the SGS. 4. The principal conclusions of this report are first, that the SGS is divisible into three physiologic regions according to the spatiotemporal pattern of excitatory synaptic activity generated by the afferent inputs and second, that there is a spatiotemporal matching of the direct collicular afferents from the contralateral retina and the indirect retinal afferents relaying through the ipsilateral visual cortex.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cats
  • Electric Stimulation
  • Evoked Potentials
  • Neural Conduction
  • Optic Chiasm / physiology
  • Optic Nerve / physiology
  • Superior Colliculi / physiology*
  • Visual Cortex / physiology
  • Visual Pathways / physiology*