Temporal and spatial characteristics of tonically active neurons of the primate's striatum

J Neurophysiol. 1995 Mar;73(3):1234-52. doi: 10.1152/jn.1995.73.3.1234.

Abstract

1. Tonically active neurons (TANs) in the primate striatum develop transient responses to sensory conditioning stimuli during behavioral training in classical conditioning tasks. In this study we examined the temporal characteristics of such TAN responses and mapped the sites of TANs responding to auditory and visual conditioned stimuli in the striatum in macaque monkeys. We further mapped the locations of TANs recorded acutely in the squirrel monkey striatum in relation to the neurochemically distinguished striosome and matrix compartments of the striatum, and made quantitative comparisons between the densities and compartmental distributions of TANs and those of four major types of striatal interneuron identified by histochemical and immunohistochemical staining. 2. We made recordings from 858 TANs at different sites in the striatum in two behaving macaque monkeys at different times during training with auditory (click) and visual (light-emitting diode flash) conditioning stimuli. TANs distributed across large parts of the striatum developed responses to the conditioning stimuli. The responses comprised a decrement of tonic firing (pause) followed by a rebound excitation. Measurements were made of the onsets, offsets, and durations of the pauses of individual TANs and of the interspike intervals (ISIs) of the same cells. 3. The mean duration of the pause responses (268.3 ms) was greater than the mean ISI of the same neurons (181 ms), suggesting that the pause represents an active suppression of TAN firing. The coefficient of variation (CV) for the pause responses was 0.28, compared with a CV of 0.63 for the same cells' ISIs. The population CV for the pauses was 0.16, compared with a population CV of 0.20 for the ISIs. These data, together with temporal analysis of the responses and population histograms, suggest that the pauses became temporally aligned across large parts of the striatum after learning. Analyses of variance (ANOVAs) were carried out to determine whether there were differences in the onset and offset latencies of the pause response or in the durations of the pause responses for TANs at different sites. These analyses suggested that, with rare exceptions, there was no difference in the timing of the TAN responses across large (> 10 mm3) parts of the striatum. 4. Comparisons of TAN responses in different regions of the striatum showed that, for responses to a given modality of conditioned stimulus, there were no significant differences in pause offset times for TANs recorded in the caudate nucleus or putamen, or for TANs recorded in more anterior or more posterior parts of these nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Conditioning, Operant / physiology*
  • Corpus Striatum / physiology*
  • Enkephalins / immunology
  • Image Processing, Computer-Assisted
  • Immunohistochemistry
  • Light
  • Macaca mulatta
  • Male
  • Neurons / physiology*
  • Spatial Behavior
  • Time Factors

Substances

  • Enkephalins