Dual modulation of synaptic inhibition by distinct metabotropic glutamate receptors in the rat hippocampus

J Physiol. 1995 May 15;485 ( Pt 1)(Pt 1):121-34. doi: 10.1113/jphysiol.1995.sp020717.

Abstract

1. The effects of metabotropic glutamate receptor (mGluR) activation on synaptic inhibition were examined using whole-cell recordings of spontaneous and miniature inhibitory synaptic currents from CA3 pyramidal cells in rat hippocampal slices. 2. The mGluR agonist (1S,3R)trans-1-aminocyclopentane-1,3-dicarboxylic acid (tACPD) increased spontaneous IPSC (spIPSC) frequency by up to 5-fold. At doses above 5 microM the increase was transient (15-45 s) and was followed by a decline to control frequency. In these conditions, elevating external K+ from 2 to 8 mM could still increase spIPSC frequency. 3. Miniature IPSCs (mIPSCs) were recorded in the presence of 1 microM TTX, 5 mM Mg2+ and nominally zero Ca2+. At concentrations above 50 microM, tACPD induced a sustained, reversible reduction in mIPSC frequency by up to 43%. 4. Quisqualate, at doses as low as 50 nM, increased spIPSC frequency, but did not affect mIPSC frequency at concentrations up to 10 microM. 5. The specific mGluR2 and 3 agonist (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV, 3 microM) reduced mIPSC frequency by 40 +/- 4% but did not increase spIPSC frequency. 6. The putative mGluR antagonist L-2-amino-3-phosphonopropionate (L-AP3, 1 mM) blocked the effect of tACPD on mIPSC but not spIPSC frequency. The broad-spectrum antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG, 500 microM) blocked both responses. 7. mGluR activation also had dual effects on IPSCs evoked by focal extracellular stimulation. Application of 5 microM tACPD increased the mean amplitude of evoked IPSCs by 112 +/- 9%, largely by reducing the proportion of response failures. In contrast, IPSC amplitude was reduced to 44 +/- 1% of control values by 3 microM DCG-IV. 8. These results suggest hippocampal inhibitory cells express two distinct mGluR subtypes. One receptor (possibly mGluR1 or 5) is located on somato-dendritic membrane and enhances cell excitability. Another (mGluR2 or 3) is present at inhibitory terminals and reduces the probability of GABA release.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 2-Amino-5-phosphonovalerate / pharmacology
  • 6-Cyano-7-nitroquinoxaline-2,3-dione / pharmacology
  • Animals
  • Animals, Newborn
  • Cycloleucine / analogs & derivatives
  • Cycloleucine / pharmacology
  • Hippocampus / drug effects*
  • In Vitro Techniques
  • Kinetics
  • Neurotoxins / pharmacology
  • Pyramidal Cells / drug effects
  • Quisqualic Acid / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Metabotropic Glutamate / agonists
  • Receptors, Metabotropic Glutamate / antagonists & inhibitors
  • Receptors, Metabotropic Glutamate / drug effects*
  • Synapses / drug effects*
  • Synaptic Transmission / drug effects
  • Tetrodotoxin / pharmacology
  • gamma-Aminobutyric Acid / metabolism

Substances

  • Neurotoxins
  • Receptors, Metabotropic Glutamate
  • Cycloleucine
  • 1-amino-1,3-dicarboxycyclopentane
  • Tetrodotoxin
  • gamma-Aminobutyric Acid
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • 2-Amino-5-phosphonovalerate
  • Quisqualic Acid