Subcompartmental organization of the ventral (protrusor) compartment in the hypoglossal nucleus of the rat

J Comp Neurol. 1995 Feb 27;353(1):89-108. doi: 10.1002/cne.903530109.

Abstract

The extent and myotopic organization of the ventral (protrusor) compartment of the hypoglossal nucleus (nXII) in the rat is controversial. Of particular concern is the location of motoneurons that innervate the intrinsic (verticalis, transversus) as compared to extrinsic (genioglossus) tongue protrusor muscles. These issues were investigated with retrograde transport, lesion/degeneration/immunocytochemical, and classic Golgi staining techniques. Results from these experiments demonstrate the following: (1) the ventral compartment extends the entire rostrocaudal length of nXII and is organized into three longitudinally oriented subcompartments, one medial and one lateral within the boundaries of nXII, and one outside the confines of nXII, defined as the lateral accessory subcompartment; 2) the medial and lateral subcompartments contain motoneurons that innervate the intrinsic (verticalis, transversus) and extrinsic (genioglossus) tongue protrusor muscles, respectively, while the lateral accessory subcompartment innervates the geniohyoid muscle; (3) ventral subcompartments are unequal in size and vary along the rostrocaudal dimension of nXII. The medial subcompartment is largest caudally and smallest rostrally, while the converse is true for the lateral subcompartment. By contrast, the lateral accessory subcompartment is present only along the caudal one-half of nXII; (4) medial and lateral subcompartments are further organized into smaller subgroups. Medial and centromedial subgroups are discernible within the medial subcompartment, lateral and centrolateral subgroups within the lateral subcompartment. Both medial and lateral subgroups extend throughout the rostrocaudal length of nXII, whereas the centromedial and centrolateral subgroups are present only along the middle two-thirds of nXII where they form a central motoneuron band; (5) there is an inverse myotopic organization within the medial and lateral subcompartments such that proximal and distal portions of intrinsic and extrinsic protrusor muscles receive innervation from rostral and caudal motoneurons, respectively; and (6) there is a correlation between motoneuron morphology (size, shape and dendritic field domains), subcompartment localization, and myotopic specificity. Motoneurons in the medial subcompartment are small (mean = 23.08 microns), round to globular, with dendrites oriented medially, dorsomedially, dorsolaterally, and caudally, whereas lateral subcompartment motoneurons are large (mean = 29.49 microns), round to triangular, with dendrites directed mainly mediolaterally and dorsally. These data are relevant to understanding the functional organization of nXII and the motor control of the tongue. Results are further discussed relative to the convergence of multifunctional afferent systems in the ventromedial subcompartment of nXII.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain Stem / anatomy & histology*
  • Brain Stem / cytology
  • Brain Stem / physiology*
  • Cholera Toxin
  • Female
  • Horseradish Peroxidase
  • Hypoglossal Nerve / cytology*
  • Hypoglossal Nerve / physiology
  • Immunohistochemistry
  • Microtubule-Associated Proteins / metabolism
  • Motor Neurons / cytology
  • Motor Neurons / physiology
  • Rats / anatomy & histology*
  • Rats / physiology*

Substances

  • Microtubule-Associated Proteins
  • cholera toxin, B subunit-horseradish peroxidase
  • Cholera Toxin
  • Horseradish Peroxidase