Protein kinase C enhances recombinant bovine alpha 1 beta 1 gamma 2L GABAA receptor whole-cell currents expressed in L929 fibroblasts

Neuron. 1994 Dec;13(6):1421-31. doi: 10.1016/0896-6273(94)90427-8.

Abstract

The beta 1 and gamma 2L subunits of the gamma-aminobutyric acid type A receptor (GABAR) contain phosphorylation sites for PKC. To determine the effect of PKC on GABAR function, whole-cell recordings were obtained from mouse fibroblasts expressing recombinant alpha 1 beta 1 gamma 2L receptors, and catalytically active PKC (PKM) was applied via the recording pipette. The first experiment was a population study. Intracellular application of PKM increased GABAR currents, and the enhancement was antagonized by coapplication of the PKC inhibitory peptide. No acceleration or deceleration of GABAR desensitization was observed. The second experiment was a reimpalement study in which paired recordings were made successively from individual cells. Enhancement of GABAR currents by PKM was again obtained. PKM increased GABAR currents at high (> 10 microM) but not at low (< 10 microM) GABA concentrations, resulting in increases in both EC50 and maximal GABAR current. Thus, PKC phosphorylation enhanced recombinant alpha 1 beta 1 gamma 2L GABAR current by increasing maximal current without increasing the affinity of GABA for the GABARs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cattle
  • Chloride Channels / physiology*
  • In Vitro Techniques
  • Ion Channel Gating
  • Mice
  • Phosphorylation
  • Protein Kinase C / physiology*
  • Receptors, GABA / physiology*
  • Recombinant Proteins
  • Transfection

Substances

  • Chloride Channels
  • Receptors, GABA
  • Recombinant Proteins
  • Protein Kinase C