Encoding of intention and spatial location in the posterior parietal cortex

Cereb Cortex. 1995 Sep-Oct;5(5):457-69. doi: 10.1093/cercor/5.5.457.

Abstract

The posterior parietal cortex is functionally situated between sensory cortex and motor cortex. The responses of cells in this area are difficult to classify as strictly sensory or motor, since many have both sensory- and movement-related activities, as well as activities related to higher cognitive functions such as attention and intention. In this review we will provide evidence that the posterior parietal cortex is an interface between sensory and motor structures and performs various functions important for sensory-motor integration. The review will focus on two specific sensory-motor tasks--the formation of motor plans and the abstract representation of space. Cells in the lateral intraparietal area, a subdivision of the parietal cortex, have activity related to eye movements the animal intends to make. This finding represents the lowest stage in the sensory-motor cortical pathway in which activity related to intention has been found and may represent the cortical stage in which sensory signals go "over the hump" to become intentions and plans to make movements. The second part of the review will discuss the representation of space in the posterior parietal cortex. Encoding spatial locations is an essential step in sensory-motor transformations. Since movements are made to locations in space, these locations should be coded invariant of eye and head position or the sensory modality signaling the target for a movement. Data will be reviewed demonstrating that there exists in the posterior parietal cortex an abstract representation of space that is constructed from the integration of visual, auditory, vestibular, eye position, and proprioceptive head position signals. This representation is in the form of a population code and the above signals are not combined in a haphazard fashion. Rather, they are brought together using a specific operation to form "planar gain fields" that are the common foundation of the population code for the neural construct of space.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Movement / physiology*
  • Parietal Lobe / anatomy & histology
  • Parietal Lobe / cytology
  • Parietal Lobe / physiology*
  • Space Perception / physiology*