Two mechanisms of quantized calcium release in skeletal muscle

Nature. 1996 Feb 1;379(6564):455-8. doi: 10.1038/379455a0.

Abstract

Skeletal muscle uses voltage sensors in the transverse tubular membrane that are linked by protein-protein interactions to intracellular ryanodine receptors, which gate the release of calcium from the sarcoplasmic reticulum. Here we show, by using voltage-clamped single fibres and confocal imaging, that stochastic calcium-release events, visualized as Ca2+ sparks, occur in skeletal muscle and originate at the triad. Unitary triadic Ca(2+)-release events are initiated by the voltage sensor in a steeply voltage-dependent manner, or occur spontaneously by a mechanism independent of the voltage sensor. Large-amplitude events also occur during depolarization and consist of two or more unitary events. We propose a 'dual-control' model for discrete Ca2+ release events from the sacroplasmic reticulum that unifies diverse observations about Ca(2+)-signalling in frog skeletal muscle, and that may be applicable to other excitable cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium / metabolism*
  • In Vitro Techniques
  • Membrane Potentials
  • Muscle, Skeletal / metabolism*
  • Patch-Clamp Techniques
  • Rana pipiens

Substances

  • Calcium