Presynaptic inhibition in humans

Prog Neurobiol. 1995 Dec;47(6):533-44. doi: 10.1016/0301-0082(95)00036-4.

Abstract

Presynaptic inhibition plays an important role in controlling sensory processing of information in humans, as in other animals. However, because of experimental constraints the methods for measuring presynaptic inhibition are necessarily more indirect in humans. The most common method uses the modulation of the H-reflex by vibratory or electrical inputs. However, these stimuli can produce postsynaptic as well as presynaptic changes so it is important to use very short periods of stimulation and measure changes at a latency where presynaptic changes predominate. In addition, the stimuli should be superimposed upon a steady background of EMG activity, preferably in a single motor unit, to maintain the postsynaptic state at a constant level. Recent studies indicate that presynaptic inhibition is used as part of the program for voluntary movement and that it can be rapidly and dramatically adapted to the task being carried out. This task-dependent modulation is produced by pattern generators within the central nervous system as well as sensory feedback from the periphery, but the relative importance of the two remains uncertain. Clinical disorders, such as spasticity, affect the ability of humans to modulate presynaptic inhibition, and contribute to the deficits observed. Improved methods for treating the symptoms pharmacologically and electrically can improve function in these patients.

Publication types

  • Review

MeSH terms

  • Electromyography
  • Humans
  • Movement / physiology
  • Reflex / physiology*
  • Synaptic Transmission / physiology*