Ultrastructure of the stomatogastric ganglion neuropil of the crab, Cancer borealis

J Comp Neurol. 1996 Oct 21;374(3):362-75. doi: 10.1002/(SICI)1096-9861(19961021)374:3<362::AID-CNE5>3.0.CO;2-#.

Abstract

The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains the neural networks responsible for rhythmic pattern generation of the foregut. Neuron counts indicate that the STG of C. borealis has 25-26 neurons, 4-5 fewer than that found in lobsters. We describe the ultrastructural features of the ganglion by focusing on those that may be involved in storage, release, or range of action of peptide modulators, including a lacunar system and multiple types of intercellular junctions. In the neuropil, we identify five synaptic profile classes that contain the invertebrate presynaptic apparatus (dense bars, small clear vesicles), two of which also contain dense core (modulator-containing) vesicles. These latter two are comprised of multiple immunocytochemical classes that are not easily distinguished by structural criteria. In addition, we find neurohemal-like profiles that contain primarily dense core vesicles. Our finding that multiple profile types in the STG possess modulator-containing vesicles coincides with immunocytochemical results better than do previous ultrastructural studies that report only one such profile type. We show that a single modulatory input, stomatogastric nerve axon 1, makes only classical synapses and not neurohemal-like profiles, although some modulators are found in both these profile types. These data provide the groundwork for understanding the architecture of modulatory input-target interactions and suggest ways that the specificity of modulatory effects within a complex neuropil may be attained.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Axons / physiology
  • Axons / ultrastructure
  • Brachyura / physiology*
  • Cell Count
  • Extracellular Space / metabolism
  • Ganglia, Invertebrate / cytology
  • Ganglia, Invertebrate / ultrastructure*
  • Gap Junctions / physiology
  • Gap Junctions / ultrastructure
  • Hydrolyzable Tannins
  • Immunohistochemistry
  • Lanthanum / metabolism
  • Male
  • Microscopy, Electron
  • Neuroglia / ultrastructure
  • Neurons / physiology
  • Neurons / ultrastructure*
  • Oligopeptides / metabolism
  • Plastic Embedding
  • Synapses / physiology
  • Synapses / ultrastructure
  • gamma-Aminobutyric Acid / metabolism

Substances

  • Hydrolyzable Tannins
  • Oligopeptides
  • gamma-Aminobutyric Acid
  • Lanthanum
  • phenylalanyl-leucyl-arginyl phenylalaninamide