The estrous cycle and the olivo-cerebellar circuit. I. Contrast enhancement of sensorimotor-correlated cerebellar discharge

Exp Brain Res. 1996 Oct;111(3):371-84. doi: 10.1007/BF00228726.

Abstract

Neuromodulation of Purkinje (Pnj) cell responses by monoamines and estrous hormones is well characterized in the cerebellum at the cellular level, but not at the level of neuronal circuits in the awake behaving animal. In the present study, simultaneous recordings of up to 16 single neurons from within the olivo-cerebellar circuit were obtained through chronically implanted microwire electrode bundles: arrays of Pnj cell like neurons (Pnj cln) in the paravermal cerebellum and neurons within the afferent source of its climbing fiber input, the rostral dorsal accessory olive (rDAO), were recorded simultaneously across 3-20 consecutive estrous cycles during constant or variable speed treadmill locomotion performance tasks. Over 90% of Pnj cln recorded during treadmill locomotion exhibited significant increases (80%) or decreases (10%) in activity correlated with the stance phase of locomotion. In contrast, cells from the rDAO increased activity during speed changes or when the rat failed to maintain the treadmill speed (position slip). On the night of behavioral estrus, which is triggered by elevations in circulating levels of 17 beta-estradiol and progesterone, the magnitude of both increases and decreases in stance-correlated Pnj cln activity increased by 85-115%. These results are consistent with our previous findings that 17 beta-estradiol and progesterone enhance excitatory and inhibitory responses of single Pnj cells to locally applied glutamate and GABA, respectively. This dual enhancement of both excitatory and inhibitory effects, apparently paradoxical at the cellular level, produced a marked heightening of the contrast of the neural population "signal" at the neuronal ensemble level. Furthermore, the stance-correlated discharge of Pnj cln during estrus preceded that during diestrus by approximately 120 ms. Frame-by-frame video analysis also suggested that the swing phase of the step cycle was shortened on estrus compared with diestrus (low hormone state). In addition, rDAO discharge correlated with speed change or position slip was also significantly increased (P < 0.05) on the night of behavioral estrus versus diestrus. Thus, estrus was associated with changes in both the amplitude and the timing of Pnj cln and rDAO discharge correlated with specific behavioral events. These estrous-associated changes in Pnj cell activity were well correlated (r = 0.84) with faster responses to random changes in treadmill speed, a motor performance task. Together, these findings suggest that the increases in the contrast of stance-correlated Phj cln discharge observed following peak circulating levels of sex steroid hormones are associated with improved motor performance on a randomly moving treadmill.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cerebellum / physiology*
  • Contrast Sensitivity / physiology*
  • Estrus / physiology*
  • Evoked Potentials, Somatosensory / physiology*
  • Female
  • Gait / physiology
  • Neural Pathways / physiology
  • Neurons / physiology
  • Olivary Nucleus / physiology*
  • Psychomotor Performance / physiology*
  • Purkinje Cells / physiology
  • Rats