Glutamate-stimulated production of inositol phosphates is mediated by Ca2+ influx in oligodendrocyte progenitors

Eur J Pharmacol. 1997 Nov 12;338(3):277-87. doi: 10.1016/s0014-2999(97)81931-0.

Abstract

The effect of glutamate on the accumulation of [3H]inositol phosphates was examined in oligodendrocyte progenitor cultures prepared from rat brains. Glutamate, and the analogues alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate, caused a concentration- and time-dependent increase in [3H]inositol trisphosphate (IP3) formation and the effect was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a competitive AMPA and kainate receptor antagonist. Similarly, the more selective, noncompetitive antagonist of AMPA receptors, 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466), significantly reduced the effect of both AMPA and kainate. In contrast, antagonists of N-methyl-D-aspartate (NMDA) receptor, (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-hepten-5, 10-imine (MK-801) and R(-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), and antagonists of metabotropic receptors, L(+)-2-amino-3-phosphono-propanoic acid (L-AP3) and alpha-methyl-4-carboxyphenylglycine (MCPG), were ineffective. These results suggest that the effect of glutamate on [3H]IP3 accumulation is mediated through ionotropic AMPA receptors. Cyclothiazide, an inhibitor of AMPA receptor desensitization, strongly potentiated the AMPA and kainate-stimulated [3H]IP3 formation as well as the uptake of 45Ca2+ in line with the previous findings. 45Ca2+ uptake evoked by AMPA or kainate, in combination with cyclothiazide, was also prevented by both CNQX and GYKI 52466. Glutamate-stimulated [3H]IP3 accumulation was prevented by EGTA, suggesting a requirement for extracellular calcium. Pre-incubation with the voltage-gated Ca2+ channel blockers, diltiazem, nifedipine and CdCl2, partially prevented the glutamate-induced [3H]IP3 accumulation as well as 45Ca2+ uptake. Similarly, the Na+/Ca2+ exchanger blockers benzamil and 3,4-dichlorobenzamil reduced significantly kainate-stimulated 45Ca2+ uptake. These data indicate that glutamate-induced [3H]IP3 accumulation is triggered by calcium influx via AMPA receptors, voltage-gated calcium channels and the Na+/Ca2+ exchanger operating in reverse mode.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Astrocytes / drug effects
  • Astrocytes / metabolism
  • Calcium / metabolism*
  • Cells, Cultured
  • Excitatory Amino Acid Agonists / pharmacology*
  • Glutamic Acid / pharmacology*
  • Inositol Phosphates / biosynthesis*
  • Kainic Acid / pharmacology
  • Oligodendroglia / drug effects*
  • Oligodendroglia / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, AMPA / drug effects*
  • Receptors, AMPA / physiology
  • Stem Cells / drug effects*
  • Stem Cells / metabolism
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid / pharmacology

Substances

  • Excitatory Amino Acid Agonists
  • Inositol Phosphates
  • Receptors, AMPA
  • Glutamic Acid
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
  • Kainic Acid
  • Calcium