Ca2+-sensitive adenylyl cyclases, key integrators of cellular signalling

Life Sci. 1998;62(17-18):1647-52. doi: 10.1016/s0024-3205(98)00122-2.

Abstract

The concept of second messenger signalling originated from the discovery of the role of cyclic AMP, although it is now known that cytosolic calcium [Ca2+]i mediates numerous signalling pathways and plays an equally vital role in many cellular events. In the last few years there has been a great deal of interest in the substantial molecular and functional diversity of mammalian adenylyl cyclases (ACs). Although AC was viewed as a generic activity, which was either stimulated or inhibited by stimulatory or inhibitory receptors, respectively, acting via alpha-subunits of trimeric GTP-regulatory proteins, the recent cloning of nine full-length isoforms, which significantly differ in their regulatory properties and tissue distributions, has revealed an unexpected level of complex regulation. In fact, each AC may integrate convergent inputs from many distinct signal-generating pathways. The nine isoforms can be divided into four distinct families, which reflect their distinct patterns of regulation by betagamma subunits of G-proteins, protein kinase C (PKC) and Ca2+. The mechanisms of regulation are often highly synergistic or conditional, suggesting a function of ACs as coincident detectors. Since all nine isoforms can be regulated either directly or indirectly by Ca2+ or PKC, a complex range of responses is possible. The Ca2+ concentration that stimulates the major ACs in brain has been found to inhibit AC activity in a number of peripheral tissues and cell lines. The purpose of this article is to review many of the important aspects about the distinct regulatory properties and cellular distribution of Ca2+-regulated ACs. Indeed, the notion that Ca2+ and cAMP are "synarchic" messengers acting in concert to regulate cellular activity was formally proposed some time ago. Here, we will focus on acute interactions between Ca2+ and cAMP and attempt to understand how AC activities can be regulated by discrete, physiological [Ca2+]i rises in intact cells. All Ca2+-regulated isoforms have characteristic distribution patterns in the brain. Also discussed are emerging insights on the temporal and spatial regulation of Ca2+- and cAMP-regulated pathways which may enable cell stimuli to elicit specific responses.

Publication types

  • Review

MeSH terms

  • Adenylyl Cyclases / physiology*
  • Animals
  • Calcium / physiology*
  • Sensitivity and Specificity
  • Signal Transduction / physiology*

Substances

  • Adenylyl Cyclases
  • Calcium