Neuronal progenitor cells of the neonatal subventricular zone differentiate and disperse following transplantation into the adult rat striatum

Cell Transplant. 1998 Mar-Apr;7(2):137-56. doi: 10.1177/096368979800700209.

Abstract

We have investigated the suitability of a recently identified and characterized population of neuronal progenitor cells for their potential use in the replacement of degenerating or damaged neurons in the mammalian brain. The unique population of neuronal progenitor cells is situated in a well-delineated region of the anterior part of the neonatal subventricular zone (referred to as SVZa). This region can be separated from the remaining proliferative, gliogenic, subventricular zone encircling the lateral ventricles of the forebrain. Because the neurons arising from the highly enriched neurogenic progenitor cell population of the SVZa ordinarily migrate considerable distances and ultimately express the neurotransmitters GABA and dopamine, we have examined whether they could serve as an alternative source of tissue for neural transplantation. SVZa cells from postnatal day 0-2 rats, prelabeled by intraperitoneal injections of the cell proliferation marker BrdU, were implanted into the striatum of adult rats approximately 1 mo after unilateral denervation by 6-OHDA. To examine the spatio-temporal distribution and phenotype of the transplanted SVZa cells, the experimental recipients were perfused at short (less than 1 wk), intermediate (2-3 wk) and long (5 mo) postimplantation times. The host brains were sectioned and stained with an antibody to BrdU and one of several cell-type specific markers to determine the phenotypic characteristics of the transplanted SVZa cells. To identify neurons we used the neuron-specific antibody TuJ1, or antimembrane-associated protein 2 (MAP-2), and anti-GFAP was used to identify astrocytic glia. At all studied intervals the majority of the surviving SVZa cells exhibited a neuronal phenotype. Moreover, morphologically they could be distinguished from the cells of the host striatum because they resembled the intrinsic granule cells of the olfactory bulb, their usual fate. At longer times, a greater number of the transplanted SVZa cells had migrated from their site of implantation, often towards an outlying blood vessel, and the density of cells within the core of the transplant was reduced. Furthermore, there were rarely signs of transplant rejection or a glial scar surrounding the transplant. In the core of the transplant there were low numbers of GFAP-positive cells, indicating that the transplanted SVZa cells, predominantly TuJ1-positive/MAP2-positive, express a neuronal phenotype. Collectively, the propensity of the SVZa cells to express a neuronal phenotype and to survive and integrate in the striatal environment suggest that they may be useful in the reconstruction of the brain following CNS injury or disease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Brain Tissue Transplantation / pathology*
  • Brain Tissue Transplantation / physiology
  • Bromodeoxyuridine / metabolism
  • Cell Count
  • Cell Differentiation
  • Cell Movement
  • Cell Survival
  • Cerebral Ventricles / cytology
  • Corpus Striatum / drug effects
  • Corpus Striatum / pathology*
  • Corpus Striatum / transplantation*
  • Interneurons / cytology
  • Neurons / metabolism
  • Neurons / pathology*
  • Olfactory Bulb / cytology
  • Oxidopamine / toxicity
  • Phenotype
  • Rats
  • Rats, Sprague-Dawley
  • Stem Cells / metabolism
  • Stem Cells / pathology*

Substances

  • Oxidopamine
  • Bromodeoxyuridine