The metabolic pathway of visual pigment chromophore formation in Drosophila melanogaster--all-trans (3S)-3-hydroxyretinal is formed from all-trans retinal via (3R)-3-hydroxyretinal in the dark

Eur J Biochem. 1998 Oct 15;257(2):522-7. doi: 10.1046/j.1432-1327.1998.2570522.x.

Abstract

Carotenoid-depleted fruit flies, Drosophila melanogaster, were reared on yeast/glucose medium containing lipid-depleted white corn grits and cholesterol. After rearing for more than a year, the yield of flies remained constant and the content of 3-hydroxyretinal in a head was three logarithmic units less than that of normal flies reared on medium containing yellow corn grits. When all-trans retinal was supplied as the sole source of retinoids, the flies formed and accumulated all-trans 3-hydroxyretinal in the dark. To examine the metabolic pathway to produce (3S)-3-hydroxyretinal in Drosophila, all-trans retinal was supplemented for two hours to carotenoid-depleted flies in the dark, and the subsequent changes in the composition of 3-hydroxyretinal enantiomers were analyzed using a chiral column on HPLC. The results indicated initial formation of (3R)-3-hydroxyretinal followed by isomerization into the 3S enantiomer. In another set of experiments, the membrane fraction was obtained from the head homogenate of retinoid-depleted flies and an in vitro assay of 3-hydroxyretinal formation from retinal was performed. The 3-hydroxyretinal produced was the 3R enantiomer, supporting the result obtained from the in vivo experiment whereby (3S)-3-hydroxyretinal is produced from retinal via (3R)-3-hydroxyretinal. Addition of NADPH enhanced 3-hydroxyretinal formation and the presence of carbon monoxide inhibited it, suggesting that hydroxylation at the C3 position of retinal occurred via the monooxygenase activity of cytochrome P-450.

MeSH terms

  • Animals
  • Darkness*
  • Drosophila melanogaster / metabolism*
  • Retinal Pigments / biosynthesis*
  • Retinaldehyde / administration & dosage
  • Retinaldehyde / analogs & derivatives
  • Retinaldehyde / biosynthesis*
  • Retinaldehyde / metabolism

Substances

  • Retinal Pigments
  • Retinaldehyde