Differential projections from gustatory responsive regions of the parabrachial nucleus to the medulla and forebrain

Brain Res. 1998 Dec 7;813(2):283-302. doi: 10.1016/s0006-8993(98)00951-2.

Abstract

The present study combined extracellular electrophysiology with anterograde and retrograde tracing techniques to determine efferent projections from taste responsive sites within the parabrachial nucleus (PBN). Taste activity was recorded from two distinct regions of the PBN, the waist region consisting of the ventrolateral (VL) and central medial (CM) subnuclei, and the external region, consisting of the external medial (EM) and external lateral (EL) subnuclei. Ascending and descending projections from these two regions differed. Small biotinylated dextran injections placed in taste responsive sites in the waist area produced a prominent descending projection to the medullary parvocellular reticular formation, a projection nearly non-existent from the external region. Differences in ascending projections were more subtle. Projections to the thalamus were bilateral in all cases, however, the waist region had a larger ipsilateral thalamic projection than the external region and the external region had a larger contralateral projection compared to the waist. Central nucleus of amygdala (CNA) projections from the waist area were primarily from posterior tongue responsive sites in VL and terminated in the central medial and lateral CNA subnuclei; external region projections were distributed to the capsular region of CNA. Both the external and waist region projected to substantia innominata (SI). Different efferent projections from the two gustatory responsive regions of the PBN may reflect functional specialization of PBN subnuclei. Descending projections from orally responsive sites in the waist area project to the lateral parvocellular reticular formation, a region implicated in brainstem circuitry underlying consummatory components of ingestive function. The external region, contains cells responsive to pain and oral aversive stimuli, but does not apparently contribute directly to local brainstem functions. Rather, forebrain pathways appear critical to the expression of external region functions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Electrophysiology
  • Male
  • Medulla Oblongata / cytology*
  • Medulla Oblongata / physiology
  • Neural Pathways
  • Pons / cytology*
  • Pons / physiology
  • Prosencephalon / cytology*
  • Prosencephalon / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Taste / physiology*