Multiple Serotonergic Mechanisms Contributing to Sensitization in Aplysia: Evidence of Diverse Serotonin Receptor Subtypes

  1. Demian Barbas1,
  2. Luc DesGroseillers1,2,
  3. Vincent F. Castellucci2,3,
  4. Thomas J. Carew4,5, and
  5. Stéphane Marinesco4
  1. 1Département de biochimie, Université de Montréal, Québec H3C 3J7, Canada
  2. 2Centre de Recherche en Sciences Neurologiques, Université de Montréal, Québec H3C 3J7, Canada
  3. 3Département de physiologie, Université de Montréal, Québec H3C 3J7, Canada
  4. 4Department of Neurobiology and Behavior, CNLM, University of California–Irvine, Irvine, California 92697, USA

Abstract

The neurotransmitter serotonin (5-HT) plays an important role in memory encoding in Aplysia. Early evidence showed that during sensitization, 5-HT activates a cyclic AMP-protein kinase A (cAMP-PKA)-dependent pathway within specific sensory neurons (SNs), which increases their excitability and facilitates synaptic transmission onto their follower motor neurons (MNs). However, recent data suggest that serotonergic modulation during sensitization is more complex and diverse. The neuronal circuits mediating defensive reflexes contain a number of interneurons that respond to 5-HT in ways opposite to those of the SNs, showing a decrease in excitability and/or synaptic depression. Moreover, in addition to acting through a cAMP-PKA pathway within SNs, 5-HT is also capable of activating a variety of other protein kinases such as protein kinase C, extracellular signal-regulated kinases, and tyrosine kinases. This diversity of 5-HT responses during sensitization suggests the presence of multiple 5-HT receptor subtypes within the Aplysia central nervous system. Four 5-HT receptors have been cloned and characterized to date. Although several others probably remain to be characterized in molecular terms, especially the Gs-coupled 5-HT receptor capable of activating cAMP-PKA pathways, the multiplicity of serotonergic mechanisms recruited into action during learning in Aplysia can now be addressed from a molecular point of view.

Footnotes

  • Article and publication are at http://www.learnmem.org/cgi/doi/10.1101/lm.66103.

| Table of Contents