Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
Next
Articles

The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization

BC Motter and VB Mountcastle
Journal of Neuroscience 1 January 1981, 1 (1) 3-26; https://doi.org/10.1523/JNEUROSCI.01-01-00003.1981
BC Motter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
VB Mountcastle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We describe in this paper the results of a new study of the inferior parietal lobule in 10 waking monkeys combining the methods of behavioral control, visual stimulation, and single neuron analysis. In this study, 1682 neurons were identified; 804 were studied in detail. Neurons insensitive to visual stimuli comprise the fixation, oculomotor, and projection-manipulation classes thought to be involved in initiatives toward action. The largest group of the light-sensitive (LS) neurons were activated from large and frequently bilateral response areas that excluded the foveal region; we term this foveal sparing. The remaining cells subtended areas including the fovea, when tested with large stimuli (6 degrees X 6 degrees), but only 8 of 216 cells studied in detail responded to the small fixation target light. We propose that a dynamic central neural process associated with the acts of fixation and visual attention suppresses responses to foveal stimuli. Parietal LS neurons are sensitive to stimulus movement and direction over a wide range of velocities. The vectors point either inward toward the center or outward toward the perimeter of the visual field, and for neurons with bilateral response areas, the vectors commonly point in opposite directions in the two half-fields; we term this opponent vector organization. The functional properties of area 7 LS neurons are such that they could signal motion in the immediate surround and the apparent motion accompanying head movements and forward locomotion. We surmise that they contribute to a central neural image of immediately surrounding space and to the perceptual constancy of that space obtaining during bodily movement. These properties are suitable for the attraction of gaze and attention to objects and events in the peripheral visual fields. It is this system, together with the classes of parietal neurons concerned with action initiatives, whose destruction is thought to account for the hemi-inattention and neglect of the parietal lobe syndrome in primates.

Back to top

In this issue

The Journal of Neuroscience: 1 (1)
Journal of Neuroscience
Vol. 1, Issue 1
1 Jan 1981
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization
BC Motter, VB Mountcastle
Journal of Neuroscience 1 January 1981, 1 (1) 3-26; DOI: 10.1523/JNEUROSCI.01-01-00003.1981

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization
BC Motter, VB Mountcastle
Journal of Neuroscience 1 January 1981, 1 (1) 3-26; DOI: 10.1523/JNEUROSCI.01-01-00003.1981
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.