Abstract
We have attempted to develop a behavioral and neuronal model for classical conditioning in the corticorubrospinal system. A conditioned stimulus (CS) was applied to the cerebral peduncle (CP) in cats which had lesions that interrupted the corticofugal fibers caudal to the red nucleus. The unconditioned stimulus (US) was an electric shock to the skin of the forelimb that produced flexion of the limb. After pairing of the CS and US in close temporal association, an initially ineffective stimulus to the cerebral peduncle was found to give rise to the flexion of the elbow. Extinction of the conditioned response was achieved by applying the CS alone or by reversing the sequence of the stimuli (US-CS: backward pairing). Furthermore, the US alone did not produce an increase in the effectiveness of the CS stimulus. Finally, pairing the fixed CS stimuli with the US at random intervals did not produce any increase in performance in response to the CS. In these respects, the observed behavioral modification has the features of associative conditioning. Because the thresholds for and the strength of elbow flexion induced by stimulation of the nucleus interpositus of the cerebellum were identical in the experimental and control animals, the interpositorubrospinal system cannot be the site of the plastic change. Since the conditioned response is most probably mediated by the corticorubrospinal system, it is likely that a modification of the corticorubral synapses underlies this behavioral change.